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1. Introduction

Supersymmetric and non supersymmetric black attractors have received an increasing in-
terest in the framework of supergravity theories [[|-[§]; especially in the case of those super-
gravity models embedded in 10D superstrings and 11D M-theory compactifications [[J]-[R€].
New solutions to the attractor equations describing BPS and non-BPS states have been
obtained and many results concerning supergravity theories in four and higher dimensional
space times have been derived [R7—-[BY. For reviews, see for instance [I0-[{F].

In this paper, we contribute to this matter by studying the attractor mechanism and
the entropy S of the two following 6D /7D black brane systems:

(1) the first system we consider concerns generic Electrically charged Black Branes (EBB
for short) in N = 2 supergravity theory in six and seven dimensional space times. If
most of the basic properties of these FBBs with electric charges

g £0, A=1,..., (1.1)

but no magnetic charges
ga=0, A=1,..., (1.2)

are quite known; there are nevertheless some specific properties that need more
studies. Here, we would like to shed more light on the FBB entropy and the elec-
tric/magnetic duality which, as we will show, turn out to be strongly related:

(a) Concerning the entropy Sgps =SEBB (¢) of the EBB black attractors in 6D and
7D, it turns out that it takes a very remarkable value! namely,

Se = 0. (1.3)

This degenerate value will be analyzed in details throughout this study by using
the criticality method; but to fix the ideas think about it as given by the gx — 0
limit of the following relation to be explicitly derived in this work,

1
Seop = 5 i <\/|q2g2|> —0, (1.4)
ga—0

with ¢ =", (quA) and g = >, (gAgA).
In an attempt to analyze what kind of information we can extract from the clas-
sical relation Sgpp (¢) = 0, we ended with the conclusion that this degenerate

IBlack holes could be either small or large depending on whether the corresponding classical horizon
area is zero or non zero [@7@7 E] If we naively apply the Bekenstein-Hawking entropy-area formula to
the small black holes, their entropy vanishes and the expected quantum degrees of freedom seem to totally
disappear. This discrepancy comes from the fact that the general relativity is only a classical effective theory
of quantum gravity opening then a way to deal with small black holes in connection with R? corrections
and supersymmetry enhancement in near horizon geometry [@, @f@] Small black holes exist also in
higher dimensions. In 5D, an explicit study of small black holes in N' = 2 and N = 4 supergravity can be
found in [@] and refs therein.



value could be interpreted as a singular limit of a bound state of the following
pair of dual black attractor
EBB-MBB, (1.5)

where MBB stands for the magnetic dual of EBB.

The black attractor bound state FBB-MBB will be introduced and commented
succinctly below; see the point 2) of this motivating presentation. But explicit
details and extensive comments will be given in the section 6 of this work.

(b) Concerning the electric/magnetic duality, it is used to deal with the Magnetically
charged Black Branes (MBB). Roughly, this duality exchanges the charges of
the FBB and the corresponding MBB dual along the standard correspondence,

EBB electric/magnetic duality MBB. (1.6)

In this study, we will show that electric/magnetic duality is in fact a univer-
sal symmetry of EBB and MBB attractors. It exchanges not only the electric
{ga} and magnetic {gp} charges (ga <> ga); but also the effective scalar poten-
tials Vepp and Vg as well as the corresponding entropies Sgpp and Supp as
illustrated below,

EBB electric/magnetic duality MBB

qa — gA
VEBB — VMBB
SEBB — SMBB -

From this correspondence, we immediately conclude that the entropy Sypp =
SumBs (g) of the magnetically charged black brane MBB should be identically
zero; in agreement with eq. ([.4). The relation Sypg = 0 will be rigourously
derived in sub-section 5.2.

We also learn that the scalar potentials Vggp and Vypp are intimately related
as it will be explicitly shown in section 5.

(2) the second system that we want to study in this paper concerns precisely generic
Dual Black Brane Pairs ( dual pairs DP for short).

A DP attractor can defined as a bound state consisting of an electrically charged
brane EBB and its magnetic dual MBB. Formally, we can represent a generic DP
bound state either as in eq ([L.§) or roughly, by using group theory representation

EBB
DP ~ (MBB) . (1.7)

In this set up, the EBB attractor considered in point 1), with the degenerate entropy

language, like a doublet

Sess = 0, can be thought of as corresponding to the singular limit

EBB
- 0



describing a singular geometry where the horizon area Aypp of the MBB attractor
shrinks to a singular point (Aypp — 0).

The same picture is valid for the dual MBB attractor which corresponds to the
degenerate limit,

0
DP 1.

describing the electric/magnetic dual of eq. ([[.§).

Before proceeding ahead, we would like to notice that the results we will derive below
for the DP attractors apply as well to:

(i) the dyonic Black String (BS for short) of the 6D N = 2 supergravity,

(ii) the DP brane bounds in all supergravity theories with scalar manifolds of the
form SO (1,1) x (G/H).

Regarding the 6D black string BS, it can be viewed as a particular representation of
the electric magnetic duality group. The BS is a pure singlet while DP is based on
the pair (L.7).

Moreover, it is interesting to have in mind that, despite their geometric differences,
the BS and DP entropy formulas are also comparable. This feature can be explicitly
checked by comparing the Spp formula ([.4) and the BS entropy relation Sgg to be
derived in section 4 eq. (.13), and which we recall below,

qogo| 1

Sps = 200l _ 1 %93 » (1.10)
2 2

with gp and gg being respectively the electric and magnetic charges of the 6D black

string. As we see, the above Spg expression and the Spp relation ([.4) have more a

less the same charge dependence structure.

Concerning the second feature; it has been pointed out in [, p4, F5], that supergrav-
ity theories with scalar manifolds having an SO (1, 1) factor would have zero entropies.
The result Sgpp = 0 of eq. (|L.3) and, up on using electric/magnetic duality

Smes =0, (1.11)

should be then thought of as special relations that are valid as well for supergravity
theories beyond those embedded in 10D type IIA superstring and 11D M-theory on
K3 we are considering in this work.

On the other hand, we will also take the opportunity of the use of the criticality con-
dition of the black branes effective potentials to develop a tricky approach to get the
BPS and non BPS states solutions by using an adapted Lagrange multiplier method.
Details on this issue will be given in section 5 of this study. BPS and non BPS black
holes as well as black membranes are distinguished by the values (f.26)-(5.23), (B)
of the Lagrange multipliers at the minimum of the effective potential. The Lagrange



multipliers {\**} given by eq. ([£3§) capture the constraint eqs. (F.§), (F-I4) on the
fields coordinates {Lax} ({.36) that are used to parameterize the moduli space of the

theory.

The organization of this paper is as follows: In section 2, we describe briefly some
useful tools; in particular the derivation of the singular value ) In section 3, we study
the EBB and MBB attractors as well as the DP black attractor bounds in 6D and 7D
N = 2 supergravity theories. In section 4, we consider with details the 6D black string.
We show, amongst others, that its entropy is invariant under electric/magnetic duality
and conclude with a general result on dyonic duals pairs of black branes. In section 5,
we study the BPS and non BPS black attractors in 6D by using a new method. This
approach is based on combining the criticality of the effective potential and the Lagrange
multiplier method capturing constraint eqs. on the field moduli. Using this approach we
derive the attractors eqs. of the 6D black hole BH and 6D black membrane BM. We also
give the explicit solutions as well as their entropies. In section 6, we derive the effective
potential Vpp of the dyonic dual pair bound DP = BH-BM. Then we study the attractor
mechanism for the dyonic DP and derive the general formula for its entropy Spp. This
result obtains for the 6D apply as well to the dyonic black hole-black 3- brane (BH-B3B)
and the (BS-BM ) bound state of the 7D theory. In section 7, we give the conclusion and
discussion and in section 8, we give an appendix.

2. General tools

To exhibit explicitly the particular features

SEBB - ‘SEBB -
SMBB - SMBB - (2'1)

of the entropies of the electrically charged EBB and the magnetically charged MBB in six
and seven space time dimensions, it is interesting to start by describing briefly some useful
results.

We begin by recalling that the moduli space M éVD: 2 of the 6D N = 2 supergravity the-
ory embedded in 10D type ITA superstring on K3 is given by the following Lie group coset

Mby5% =80(1,1) x Gg,

_ S0(4,20)
% =50 (4) x SO (20) ° (22)

A quite similar factorization holds for the scalar manifold M éVD: 2 of the N/ = 2 supergravity
theory in 7D space time embedded in 171D M-theory on K3. It reads as follows

M7 =SO(1,1) x Gr,

_50(3,19)
Gr = SO (3) x SO (19) (23)




As we see, the two scalar manifolds M25? and MY5? are given by the product of two
factors namely SO (1,1) and G,, with n =6, 7.

The real one dimensional factor SO (1, 1) is parameterized by a real field variable o,
to be interpreted as the 6D (resp. 7D) dilaton o = o ().

The factor Gg is real 80 dimensional manifold parameterized by the real field coordi-
nates,

oM (z) ~ (4,20) , (2.4)

transforming in the bi-fundamental of the SO (4) x SO (20) isotropy symmetry with a =
1,...,4and I =1,...,20.

The factor G7 is real 57 dimensional manifold parameterized by the field coordinates
£ (z) ~ (3,19) , (25)

transforming in the bi-fundamental of the SO (3) x SO (19) isotropy symmetry with o =
1,2,3andi=1,...,19.

As the technical analysis of eqs. (2.9) and (R.3) is quite similar, we will focus our
attention mainly on the 6D theory and just give the results for the 7D case.

2.1 Effective potential

The effective potential V of black attractors in generic space time D- dimensional extended
supergravity, including 6D N = 2, have been studied in [fH]; see also [4] as well as the
appendix of this paper. The general form of this potential reads formally, in terms of the
geometric Zge, and the matter Zater central charges, as follows

v (¢) ~ ‘deo ((15)’2 + ’Zmatter (¢)‘2 :

Notice that Zge, has contributions coming from the physical charges of the various gauge
fields of the gravity supermultiplet while Z.tter has contributions coming from the gauge
fields in the matter sector.

In the case of 6D N = 2 non chiral supergravity, we have the following gauge field
strengths,

gravity multiplet : Hs = dBs, $ =dAY,
matter multiplets : Fl=aAl, (2.6)

together with their magnetic duals Gz, G¢ and GI. So Zgo%N:2 and Zﬁggﬁf ? have contri-

butions from the charges of (Hs,Gs) , ( g,}"j’) and (gg,gi); and then the full effective
potential V6P-N=2 inyolves three blocks namely Viack string> Vblack hole a0d Viiack membrane-
Notice also that in eq. [R.6), B = %da:“dx”B[W} is the usual NS-NS B, - field in 6D, the
gauge fields Aj; stand for the four graviphotons and Aﬁ for the twenty Maxwell fields of the
non chiral 6D supergravity embedded in type ITA superstring on K3, see eqs. (B.29)—(B.3()

to fix the ideas.



Following [§] and [54)], we can compute explicitly the various contributions Vyaer string

Viiack hole @A Viiack membrane Dy using the following generic relations,
BS |2 BS |2
Vblack string ™ ‘Z ‘ + |Z |

geo matter )

Vblack hole ™~ ‘delg‘z + |Z£§tter|2

BM |2 BM
Vblack membrane ™ ‘deo ‘ + |Zmatter

)

| 2

These contributions, which are respectively associated with (Hs,Gs) |, ( 3, le ) and
(G4,G1), will be studied later on; they are given by egs. (J), (F-3), (£:37). With these
relations in mind, we turn now to study some specific properties of these potentials.

One of the consequences of the factorization (2.J) of the manifold M35 is that the
EBB (resp. MBB) effective scalar potential

Vib© =Vip- (0,9) (2.7)
where the upper index SBB stands either for EBB or MBB, factorizes as well like
Ven© = Vsoa,1) X Vs - (2.8)
The term in the right hand of the above relation,
Vso(1,1) = Vai () , (2.9)

is the dilaton contribution to eq. (B-§); it has no dependence in the local field coordinates
¢*L; that is no dependence in the matter fields of the Maxwell sector of the theory,

IVso(1,1)

St =0 (2.10)

We will see later on that this contribution is given by the typical remarkable relation

Vso(1,1) (0) ~exp (no) , (2.11)

where the number n depends on the type of the black brane we are dealing with. More
precisely, we have the following values [f4, Fg],

6D black string : n==4,
6D black hole : n=-2, (2.12)
6D black membrane : n=+42.

The factor Vg, of (B.§) has no dependence in the dilaton

VGG - VGG (¢) )
Ve _ (2.13)
do

it describes the contribution of the matter fields {qﬁ“l } in the Maxwell sector of the 6D
N = 2 supergravity theory. The explicit field expression of Vg, in terms of the oM will be
given later on.



2.2 Criticality condition

First we study the electrically (resp. magnetically) charged black brane EBB (resp. MBB).
Then we consider the case of the dyonic black string BS.
The critical values (o, ¢) = (0c, ¢.) of the effective scalar potential V5B (B7)-(E.9)
are obtained by solving the constraint equations
oV

o0

ovsEe
8¢a[

—0, (2.14)

which, due to the factorization property (R.§), simplify like,

MNVsoa,) 0
Oo -

Ve,
aqbal

=0. (2.15)

The critical value o, of the dilaton that extremize the potential Vso(1,1), and then VSBB,
is obtained by computing
Vsoy)  9[e™]

~ =ne™ =0 2.16
0o 0o ne ’ (2.16)

from which we learn that the critical point corresponds to the following infinite value,

no. — —00. (2.17)

For n >0, 0, — —o0 and for n < 0, 0, — +00.
Putting this value back into Vso(1,1) €q. (B11)), we see that the value of the potential
Vs0(1,1) at the critical point vanishes identically; i.e,

[VSO(M)}U:% =0. (2.18)

Because of the factorization (R.§), we also have

VBB, =0, (2.19)

o=0¢

leading as well to the zero entropy relation,
SSEB =0, (2.20)

in agreement with eq. ([.3).
For the dyonic 6D black string, the situation is different. The form of the corresponding
effective potential Vgg has the following field moduli factorization,

Vs = Vso(1,1) (0) X V6 (¢) + Vsoa,1) (—0) x Vs (¢) , (2.21)

where Vg (¢) stands for the contribution coming from the electric charge and Vg (¢) the
contribution coming from the magnetic charge.



As we will see in details later, it turns out that the solving of the criticality condition
of Vpg leads to a finite critical value of the dilaton

loo] < o . (2.22)

Substituting this value back into Vgg, we obtain a positive definite value of the effective
potential at the minimum,
VBs (0)]g—y, >0, (2.23)

leading in turn to a on a zero value of the entropy Sgg for the dyonic 6D black string. The
value of Sgg is given by eq ([.I0); it will be computed explicitly later on, see eq. ({.13).

3. Duality symmetry and entropy

First, we describe some useful aspects on:
(1) the 6D and7D attractors and the dual pairs,

(2) the gauge invariant n-forms in generic d- dimensions; in particular the elec-
tric/magnetic duality [p6-p§ and the fluxes used to define the various electric and
magnetic charges.

Then, we study the ”dyonic” attractors in 6D and 7D. We will distinguish the two following
cases:

(a) the 6D Black String BS; behaving as a singlet under electric/magnetic duality
(BS) . (3.1)
No analogous object exists in 7D.

(b) Bound states of dual EBB and MBB behaving as pairs under electric magnetic duality

EBB
(5mm). o

The possible candidates for these bound pairs are:
(i) the 6D Black Hole - Black Membrane (BH-BM ),
(ii) the 7D Black Hole - Black 3- Brane (BH-B3B),
(iii) the 7D Black String - Black Membrane (BS-BM).

Below, we shall focus our attention in a first step on the special 6D dyonic string BS and
its entropy Sps.

Then, we study the basic properties of the BH and BM black attractors separately.
This study can be viewed as a prelude to BH-BM bound.

More details on the dual pair BH-BM in six dimensions and its analogues in 7D will
be considered in section 6 and the discussion section.



3.1 6D and 7D black attractors

Electric/magnetic duality permutes electrically charged objects and their magnetic
charged duals. In 10D type II superstrings and 717D M-theory compactifications down to
d- dimensions, this discrete symmetry relates those pairs of p;- and ps- dimensional black
objects with the condition

pr+pr=d—4, d>4. (3.3)

From this relation, one recognizes:
(1) the 4D dyonic black hole corresponding to p; + pa = 0.
(2) the 6D dyonic black string corresponding to p; + p2 = 2.
(3) the 8D dyonic black membrane corresponding to p; + ps = 4.

In six and seven dimensions we are interested in we have the following:6D case.
In the non chiral 6D A = 2 supergravity theory embedded in 10D type IIA superstring on
K3, the relation (B.3) reads as,

nt+p2=2, (3.4)

and can be solved in three ways like:

(a) the case (p1,p2) = (1,1) describing a dyonic black string (BS).

The 6D BS attractor carries both an electric charge qg and a magnetic charge gg
associated with the gauge invariant 3-form field strength

Hz = dBa (3.5)
of the N = 2 supergravity multiplet.

(b) the case (p1,p2) = (0,2) describing a magnetic black hole (BH).

In 6D, the BH attractor carries 24 magnetic charges gEH (ga for short) associated
with the gauge invariant fields strengths

Fy = dA}, (3.6)
of the N' = 2 supergravity theory. The 6D BH hole has no electric charge,

qax’ = 0. (3.7)

(¢c) the case (p1,p2) = (2,0) describing an electric 6D black membrane (BM) carrying
2/ electric charges qEM (qa for short) related to gEH under electric magnetic duality.

The 6D black membrane has no magnetic charge

gpt =0. (3.8)

— 10 —



The above BH and the BM attractors are related by electric/magnetic duality in six
dimensions. As such, the bound state made of the 6D black hole BH and the 6D
black membrane BM

BH
6D : BH-BM = 3.9
(1) o

form a dyonic pair of black attractors with 24 electric and 24 magnetic charges
{aa,ga}, A=1,...,24 (3.10)

Viewed as a single entity, the composite state BH-BM should, a priori, share the basic
features of the dyonic black string BS; in particular sharing aspects of the effective
potentials and their entropies. We will study these features details later on.

7D case. In the case of 7D N = 2 supergravity theory embedded in 17D M-theory on
K3, the relation (B.3) becomes
p1t+p2=3 (3.11)

and it is solved in four manners as follows:

(a) the case (p1,p2) = (0,3) describing a magnetic 7D black hole (BH ),

(b) the case (p1,p2) = (3,0) describing an electric 7D black 3-brane (B3B), dual to the
black hole.

(c) the case (p1,p2) = (1,2) describing a magnetic 7D black string (BS).

(d) the case (p1,p2) = (2,1) describing an electric 7D black 2-brane (BM), dual to the
black string.

The 7D N = 2 supergravity theory embedded in 11D M-theory on K3 has the following
abelian gauge symmetry,

Uns (1) x U3 (1) x U (1) . (3.12)

The 7D black hole BH and black 3-brane B3B are charged under the U?? (1) gauge sym-
metry of the supergravity theory while the 7D black string BS and black membrane BM
are charged under the gauge invariant 3-form and its dual 4-form.

Notice that in 7D N = 2 supergravity theory, we have no dyonic singlet; but rather
two kinds of dyonic pairs:

(i) the pair

BH
BH-B3B = 1
3 (BS’B) , (3.13)
carrying 22 electric charges {q1,...,q22} and 22 magnetic ones {g,...,go2}.

(ii) the pair

BS
BS-BM = 14
sou= (). o

carrying an electric charge qp and a magnetic charge gg.

— 11 —



Notice also that there is a correspondence between the attractors in 6D and 7D space time
dimensions. We have,

6D : BS — 7D : BS-BM,

6D : BH-BM — 7D : BH-B3B. (3.15)
This property is a consequence following from the relation between 11D M- theory and

10D type ITA superstring; which after compactification on K3, descends to the 6D and the
7D space times.

3.2 Dyonic attractors in 6D supergravity

To start recall that in the d- dimensional space time, a gauge invariant (p + 2)- form
field strength (p < d — 2),

1
Fpr2 = (p+ 2)!%%+2 A F iy s (3.16)
with a (p + 1)- form gauge connection
1
Arer = G 2 A (3.17)

has a Poincaré (magnetic) dual given by

Gimpz = Fysa. (3.18)
with the usual property
Gapg = — ()PP L (3.19)
Expanding Gg_,—2,
Gy = gy g G (3:20)
we also have
Glostld = F gl it (3.21)

with gt Hpt+2tp+3--Hd heing the d- dimensional completely antisymmetric tensor.
The magnetic charge g (resp electric charge q) associated with the field strength 7,2
(resp. G4—p—2) can be defined as

g = fp-l-? )
Sp+2

q= / Gd—p—2- (3.22)
Sd7p72

Using the normalized n- volume form 2,, of the real n- sphere S”,

/anl, n=p+2 or d—p—2, (3.23)
Sn

— 12 —



we can also express the gauge invariant field strengths as follows,

Fpi2 = & Qpra,
Ga—p—2=9qRp-2, (3.24)
with
Qp+2 A Qd_p_g ~Vy. (325)

where Vj is the volume real d- form of the space time. We also have
Fpr2 N Ga—p—2 ~ gqVy, (3.26)
with the following quantization condition relating electric and magnetic sectors,
gq = 27k, k integer . (3.27)

Seen that the analysis for 6D and the analysis for 7D are quite similar, we shall fix our
attention in what follows on the 6D N = 2 non chiral supergravity theory; too particularly
on the case of 6D supergravity models embedded in 10D type ITA superstring on K3. There,
the field theory spectrum following from the compactification of 10D type IIA superstring
on K3, involves the two supersymmetric multiplets namely the gravity supermultiplet and
the Maxwell supermultiplets:

(1) the gravity supermultiplet.
This supermultiplet contains, in addition to fermions, the following bosonic fields:

(i) the 6D gravity field : G = G (T) w,v=20,...,5,
(i)  theNS—NSB—field: B, =B, (z),

(iii) four U (1) gaugefields : A=A (), a=1,...,4,
(iv) the 6D dilaton : o=o(x).

(2) the Mazwell gauge sector.
This sector involves twenty Maxwell supermultiplets with the following bosons:

(i) twenty abelian gauge fields : .Ai = Ai (z), I=1,...,20,

(ii) twenty quartets of scalars : Gal = Gar (T) .

The abelian gauge symmetry group of the 6D N = 2 supergravity theory that we are
considering here can be cast as follows

Uns (1) x U* (1) x U (1) . (3.28)

The Uns (1) factor is the abelian gauge symmetry associated with the NS-NS gauge field
B, and field strength F3 that we have denoted earlier as Hs.

The abelian factor U* (1) is the gauge symmetry with the four gauge fields AJ, and the
field strengths F3 of the supergravity multiplet.

— 13 -



The factor U?° (1) is associated with Aﬁ and the field strength FI of the Maxwell-
matter sector.
Along with the gauge invariant fields strengths

f?) ) g ) fQI . (329)
We also have their Poincare duals namely
Gs, Gi. Gi. (3.30)

The (1 + 24) electric charges and the (1 + 24) magnetic charges associated with these gauge
invariant field strengths are as follows:

(a) dyonic black string BS.
The 6D dyonic BS has an electric charge qg and a magnetic charge gg with the
following quantization condition

dogo = 2wk, (3.31)
where ko is an integer (kg € Z).

(b) 6D black hole BH.
The six dimensional BH has magnetic charges? under the gauge symmetry U2 (1).

grn, A=1,...,24. (3.32)

(¢) 6D black membrane BM.
The six dimensional BM is the dual of the black hole and is electrically charged under
the U?* (1) gauge symmetry:

ar, A=1,...,24. (3.33)

The electric and magnetic charges of the 6D black hole and the 6D black membrane are
related by the quantization condition,

aagA = 27k , kn € Z. (3.34)

In the brane language of 10D type IIA superstring on Calabi-Yau manifolds, the electric
and/or the magnetic charges are associated with branes wrapping cycles of Calabi-Yau
manifold (CY). In the 6D case we are considering, the CY manifold in question is given
by K3 with a homology containing, in addition to the 0- cycle Cy (K3 points) and the real
4- cycle Cy, real twenty- two 2- cycles 021 . We also have the special features collected in
table [[. The last column of the table gives the 6D generalized Bekenstein-Hawking entropy

2For a geometric derivation of the explicit relation between the bare charge ga and the physical charges
(ma, mr), see [@]
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6D black attractors: electric/magnetic near horizon geometry  Entropy
_3
dyonic black string: (qo, go) AdSs x S3 R%l Gy'
black hole: (0,g7) AdSy x S* R}, Gy
_1
black membrane: (qA, 0) AdSy x S? R%_g Gy°

Table 1: Electric and magnetic charges of black objects in 6D N = 2 supergravity, their near
horizons geometries and their entropies.

formulas which are expressed in terms of the 6D Newton constant GN and the radius of
the horizon geometry. In the case of black string for instance, we have

]

entropy -

where Ay, is the 3d- horizon "hyper-area” in agreement with dimensional arguments and
black object thermodynamics laws.
Notice in passing that the 6D black hole BH is made of:

e DO branes,
e D2 brane wrapping the twenty- two 2-cycles of K3, and
e D4 wrapping K3.
The dual black membrane BM is made of:
e D2 branes,
e D4 brane wrapping the 2-cycles of K3, and
e D6 brane wrapping K3.

These 6D black objects have different AdS,+2 x S*7P near horizon geometries; they are
schematically represented on the figure 1.

3.3 Entropy of 6D black attractors

Using dimensional arguments and the near horizon geometry, the entropy formula S, of
the black p-brane attractor in six space time dimensions, that describes the analogue of
the Hawking Bekenstein entropy of the 4D black hole, can be written by as follows

_4d-p
Sy=Ry’Gy ™, p=0,12. (3.35)

Here Gy ~ lf;l anck 18 the 6D Newton constant scaling as (lenght)4 and where R%,l, R%Q
and Rj%{S stand respectively for the horizon “hyper-areas” of the black hole BH (p = 0),
the dyonic black string BS (p = 1), and the black membrane BM (p = 2).
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Figure 1: This figure represents the black attractors in 6D N=2 supergravity. Dashed loops refer
to the near horizon geometries: (i) On top: we represent a black string with near horizon geometry
AdS; x S3. (ii) Bottom-left: a BH with its near horizon AdSs x S*. (iii) Bottom-right: a black
membrane with AdS; x S? geometry.

The entropy S, is completely specified by the electric ¢ and magnetic g charges of the

black attractor,
Sp=Sp(a:9) - (3.36)

In the next sections, we will first show that the entropies

Spu = So (ga) ,
Ses = S1 (90, 90) , (3.37)
Sem = S2(qa) ,

are indeed specified by the appropriate electric go and gp as well as the corresponding
magnetic gg and gx ones.

Then we use this result to check explicitly that, at supergravity level, the entropy
51 (qo, go) of the 6D black string is invariant under electric/magnetic duality.

This property is also used to conjecture that the invariance of Spg under the elec-
tric/magnetic duality is a general feature of dyonic objects including black brane bound
states.

As such, invariance under electric/magnetic duality should holds also for the entropy

SesB-mBB = Spp (qa, 9A) , (3.38)

of the dual pair bounds DP = (EBB-MBB) given by eqs. (B.9), B.13), (B.14).
By using this natural conjecture, it follows that under the dual change

qa — ¢4 =94,
ga — g4 =4qa, (3.39)

we should also have
Sees (q4) < Suss (97) | (3.40)
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where Sgpp and Sypp stand respectively for the entropies of an electrically charged black
brane EBB and its magnetic dual MBB.

In this view, invariance of the entropy &1 of the dyonic black string BS under the
change (B.39) as well as of the dual pair bounds DP,

S1 (90, 96) = S1 (0, 90)
Spp (¢h:9h) = Spp (4, 9a) (3.41)

follows straightforwardly. The result for the case Spp (ga, ga) will be explicitly derived in
section 6. The case of the 6D black string BS will be studied below.

4. Black string

The six dimensional black string is a dyonic black attractor solution of the N’ = 2 non
chiral supergravity with near horizon geometry AdSs x S3. The magnetic charge m = g°
and the electric charge e = qg carried by the BS are those of the gauge invariant 3- form
field strengths F3 and Gz = *F3. The x conjugation stands for the usual six dimensional
Hodge duality interchanging n- forms with (6 — n) ones.

The field strengths F3 and G3 are associated with the NS-NS 2- form B, fields in six
dimensions. Using eqs. (B-23), we have

g0 =/ F3, Q= Gs. (4.1)
53 53

The electric q° and magnetic gy charges obey the quantization condition (B.31)).

4.1 Entropy of the black string

The effective potential Vs = Vps (0, g0, qo) of the BS is given by the the 6D extension of
the 4D Weinhold relation [i5, b3, pJ). It reads in terms of the dilaton field o = o (z) of
the 6D N = 2 supergravity multiplet and the electric/magnetic charges like [p4],
o2 Q2
VBs = 70 exp (—4o) + 70 exp (4o) . (4.2)

In addition to the exponential behavior, the potential Vg has the remarkable invariance
under the following change,

o— —0 and g0 < qo - (4.3)

At the horizon r = REOSrizon of the dyonic BS, the above potential Vgg is at its minimum.

The value of the dilaton at horizon

o1=0(r= RBS ), (4.4)

horizon
is obtained by solving the following constraint equation

dVgs (o)

=0 4.5
B =0, (4.5)
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which in turns leads to,

202 exp (40) — 2g2 exp (—40) = 0. (4.6)
The critical value o1 of the dilaton at the horizon REOSrizon is given by
exp (doy) = 22 > 0, (4.7)
do
or equivalently
£0

o) = im( = > . (4.8)

From this solution, we learn two interesting information:

e The first information, noted previously in [BJ], concerns the electric/magnetic duality.
The latter requires interchanging the electric qg and magnetic gg charges; but also
performing the change

o— —0 (4.9)

in the moduli space. This property is manifestly exhibited by eqs. (3)-([£§).

e The second information we learn concerns the critical value oy of the dilaton at the
horizon of the black string eq. ([.§). Finite critical values oy of the dilaton requires
that both the electric qg and the magnetic gy charges have to be non zero, i.e

dogo # 0, (4.10)
or equivalently by using eq. (B.31])
ko #0 . (4.11)

We will see later that this is a general property valid also for of the 6D dyonic pair
BH-BM.

min

Moreover, the value V5&" of the BS potential Vpg (0) at the minimum of the black
string potential is

VERS (01) = |aogol > 0, (4.12)
and so the BS entropy reads as
S = |q°4g°| : (4.13)
Up on using eq. (B.31]), S1 can be also expressed as
k
S = 7T|—2°| . (4.14)

where kg is an integer. Notice that because of the constraint eq. (), the entropy Sy
given by the above egs. is necessarily positive definite.

Below, we want to discuss what happens to the entropy &; if we try to go beyond the
constraint eq. ({.10).
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4.2 Regular and singular representations

For later use, we make two comments concerning the effective potential of the dyonic

black string. The first comment concerns the generic case where kg # 0 and the second

deals with the singular case kg = 0.

(1) case ko # 0.
This case corresponds to the dyonic black string of the 6D N = 2 non chiral super-

gravity we have been studding. In fact it is interesting to distinguish two situations:

(a)

Regular representation: gy # 0, qg # 0.
Here, the extremum of the black string potential at

1
0'121111<

is well defined and is precisely a minimum. Since gy and qg are related as in
eq. (B.31), we can be expressed oy either as

g0

do

) : (4.15)

1
0'1:—111

4

21k

a3

: (4.16)

by using the electric charge q¢ and the integer kg, or equivalently by using the
magnetic charge go like
2
&0

. 4.1
271']{70 ( 7)

0'1:—111

The value of the potential at the minimum depends remarkably on the integer
ko as shown below,

VB (1) = 27 [ko| > 0 . (4.18)

This is an interesting property that let understand that a non zero entropy value
seems to need dyonic charged black branes since if taking for example gy # 0

and finite but qp = 0, eq. (4.18)) vanishes identically.

Singular representation.
Notice that, strictly speaking, the condition kg # 0 corresponds to ggqg # O.
But this condition could be solved in general in two ways:

e First by using regular finite charges gg # 0 and qg # 0 as just discussed
above.

e Second by considering the singular situation where we have an infinite num-
ber of electric charges and no magnetic charge; i.e

qo — 00 and go — 0, (4.19)

together with the constraint gy = 2—8.
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We can also have the symmetric case where we do have an infinite number of magnetic
charges and no electric charge:

qo — 0 and gy — 00. (4.20)

These particular and singular configurations are in some sense formal; but very sug-
gestive. They will be used later on to approach the dyonic pair BH-BM.

(2) Case ko = 0.
Using eq. (B.31)), this case is solved as

£o 75 0, qo = 0. (4.21)

or like

g0=0, q#0. (4.22)

They can be also associated with the (self dual and anti-self dual part) black string
of the 6D N = (2,0) chiral supergravity. There, the NS-NS B- field field By, splits
into a self dual part

_l’_
B[W] , (4.23)
and anti-self dual part
B[Lu] . (4.24)
The strength HF:\ ] associated with the self dual part B[ZV]’
Hy = dBy, (4.25)

is in the gravity supermultiplet while the field strength H;W of the anti-self dual part

Bl

H; =dbB,, (4.26)
together with the field o, are in the tensor multiplet.

min

The minimum V3§" (o1) of the black string potential is at infinity; that is either at
o1 — +00, (4.27)

or at
g1 — —0O0.
min

In both cases, VEE" (01) takes a zero value in agreement with eq. ({.1§). For illustration; we

give in figure 2 the general behavior of the black string potential in terms of the dilaton o.

— 20 —



© [T

Figure 2: Variation of the effective potential with to the dilaton field. (a) Case of black string in
6D N = 2 non chiral supergravity. (b/c) black string in 6D N = (2,0) chiral supergravity.

4.3 Electric/magnetic duality

The key property of the above dyonic black string entropy relation (f.13) is that Spg is
invariant under the following electric-magnetic change

do — dp = 8o
2 — g0 =do, (4.28)
with
Sgs (d0, 80) — Sps (40, 80) = Sps (d0, o) - (4.29)

This property, which can be explicitly checked on previous egs., was expected since we are
dealing with a dyonic object.

Moreover, using the discussion of sub-section 4.2 (singular representation), the rela-
tion (f.29) can be extended to the 6D dyonic pair BH-BM.

Black hole/black membrane.
Denoting by Sgg the entropy of magnetically charged black hole BH; i.e

Spu = Spa (g84) (4.30)
and by Spum the entropy of the electrically charged black membrane BM; i.e
SBM = SBM (qA) . (4.31)

Then performing the electric/magnetic duality (f.29), the entropies Spy (ga) and Sgym (qa)
are interchanged as follows

Sgi (ga) — Seu (gh) = Seum (qa)
Sem (aa) — Sem (dy) = Sea (ga) - (4.32)

From these relations we learn that, like for the dyonic BS singlet, the entropy

Spp = SBH-BM (8A,d4p) (4.33)
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of the dyonic pair DP = BH-BM obeys the same identity as eq. ({.29). It is invariant
under electric/magnetic duality transformation.

Sop (ga,ap) = Spp (gh,d}) - (4.34)

In what follows, we want to prove this statement by computing explicitly the expressions
of Spp (ga,qs) and Spp (g}, d) ). But before that we need to study the effective potentials
and the attractor eqgs. of the following:

(a) the BPS and non BPS black holes in 6D N = 2 non chiral supergravity
(b) the BPS and non BPS black membranes in 6D N = 2 non chiral supergravity
(c) the BPS and non BPS dyonic pairs DP= (BH-BM).

The effective potential and the attractor mechanism of the 6D black string BS has been
explicitly studied in [f4]. We will then just give the results.
We also take this opportunity to develop a new method to deal with the computation
of the critical values of the effective potentials of the BH and the BM in six dimensions.
This new method relies on enlarging the moduli space of the 6D N = 2 supergravity
by including Lagrange multipliers,
ME = \EA (4.35)

capturing the constraint eqs. on the field matrix
Lys = Las (), (4.36)

used to parameterize the SO (4, 20) orthogonal group manifold involved in the moduli space
S0O(4,20)
S0(4)xS0(20) *

5. Attractor eqs. and Lagrange multiplier method

We first describe the effective potential Vg of the 6D black hole. Then, we use the elec-
tric/magnetic duality and results from [5g] to determine the effective potential Vgys of the
black membrane. After that, we study the attractor egs. and their solutions by combining
the approach of the criticality of the potential and the Lagrange multiplier method.

5.1 Effective potential Vpy

In the 6D N = 2 non chiral supergravity embedded in 10D type IIA superstring on K3, the
black hole BH is magnetically charged under the U* (1) x U? (1) gauge group symmetry.
The bare magnetic charges g® are given by,

gA:/ Fy,  A=1,...,24. (5.1)
5‘2

The magnetic charges g® form a charge vector the group SO (4,20) with signature 4(+)
and 20(—) captured by the diagonal flat metric nay of the tangent space R(420)
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5.1.1 Potential of the BH

The effective scalar potential Vg of the black hole is given by the Weinhold relation,
expressed in the flat coordinate frame,

4 20
Ve = (Z RVAVARS Y 6UZIZJ> : (5.2)

a=1 I=1
In this relation, the central charges Z, and Z; are respectively the dressed charges describ-
ing respectively the physical charges of the four Maxwell fields in the gravity supermultiplet
and the twenty Maxwell fields of the matter sector.
The dressing of the charges is given by the following linear combination,

24

Za = Z UaAgA7
A=1
24

Z; = Z Urng™, (5.3)
A=1

where Uy parameterize the moduli space M éVD: 2 of 10D type IIA superstring on K3,

M5y5% =80(1,1) x Gg,

_50(4,20)
% =50 (4) x SO (20) ° (54)

Notice that the real matrix Upy obeys a set of constraint relations that can be used to put

Upy in a more convenient form. We have the following properties:
(i) the factorization property which allows to factorize Upy, as follows:

Uprs = € 7Las,
Ups = €" Ly, (5.5)
L=t =nLly.

Here e~ parameterizes the factor SO (1,1) of M éVD: 2 and Ly, defines Gg. Multiply-

ing this equation by the magnetic charge vector g*, we obtain the dressed magnetic
charge vector Zx = (Z,, Z1),

24 24
Za = Z UaEgE =e 7 Z Lazgz 5
¥=1 ¥=1
24 24
Z[ = Z szgz = 6_0 Z L[EgZ . (56)
¥=1 Y=1

(ii) the orthogonality property of the elements of the SO (4, 20) group which requires that
the real 24 x 24 matrices Ly, should obey the orthogonality condition:

4 20
Z 8 LonLgs; — Z K ELgaLrs = Ay, (5.7)
cd=1 K.L=1
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(iii)

with A and ¥ = 1,...,24. This relation can be also rewritten as

24

(L'nL) s = > LinrrLl =mas. (5.8)
T,I'=1

Multiplying both sides of this equation by gg>, we obtain the following constraint eq.

4 20
Z Sap 222" — Z 6121727 = 7272 (5.9)
a,b=1 1,J=1
with
24
> ghmamg” =g (5.10)
Ax=1

This relation expresses the orthogonality condition in terms of the magnetic charges.
We will refer to it as the "magnetic orthogonality” relation.

the isotropy invariance under SO (4) x SO (20) which acts on the matrix
Ly, € SO (4,20) as a gauge group symmetry,

L =hLh™, (5.11)

where h € SO (4) x SO (20), the maximal compact subgroup of SO (4, 20).

5.1.2 Implementing the Lagrange multiplier

Notice that the matrix variable Lpy has 24 x 24 real parameters which is much larger that

the 80 moduli required by (p.4). The properties (ii) and (iii) are then constraint egs. on

L s, which is convenient to cast as follows:

Lab La]
Ly = . 5.12
A ( Ly, Ly > (5.12)

To deal with the undesired degrees of freedom in Ly, we proceed as follows:

(1)

we fix the SO (4) x SO (20) gauge symmetry by working in the gauge where the
sub-matrices L., and L;; are taken symmetric:

Loy = Ly, , Lij=Lys. (5.13)

the orthogonality property eq. (B.§)
(L'nL) sy = max (5.14)

will be imposed by using the Lagrange multiplier method. This method should be
understood as an alternative way to the usual Maurer-Cartan equation generally used
to deal with this matter [f5].
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Eq.(F.§) suggests that the Lagrange multipliers should be a symmetric matrix field A

like in eq. ({.35); but the equivalent reduced form eq. (p.9) of the constraints suggests that

AAE as follows,

it is more convenient to take the Lagrange parameters
ME = \gh g™, (5.15)

where now we have only one Lagrange multiplier .
Therefore the previous expression of the effective scalar potential Vgy of the black hole
potential can be put into the following form

Vi (0, 2,\) = (Zu 2% + Z1 Z%) + N (2,2 — 212" — %7 g?) | (5.16)

where we have set

4
Z,2% = > 6 2°2",
a,b=1
20
Z 2" =Y 61,2'27. (5.17)
1,J=1

In this relation, we have an extra dependence on the Lagrange multiplier A. Moreover,

setting

Z, =€ R,

Z] = G_UR[, (518)
with

Ra - LaAgAa

R = Liagh, (5.19)

we can factorize out the dilaton field dependence in the effective potential. We have:
Vii (0, R,\) = e Vg (R, A, g) (5.20)
with Vg (R, A, g),
Vo (R, A\ g) = (ReR* + RiR") + X (R,R" — RR" — ¢?), (5.21)

being the potential of the black hole at ¢ = 0. The factor V, has no dependence in the
dilaton field.

5.1.3 Attractor eqgs. and their solutions

Because of the structure of the effective black hole potential

ViH (Z,\) = Vi (0, R, \) | (5.22)
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with

R=R(Lys) , (5.23)

the attractor egs. for the six dimensional magnetic black hole can be written in different,
but equivalent manners depending of the variables we use.

For example, the attractor egs. can stated by using as variables the dilaton o, the
dressed charges R® and R’ and obviously the Lagrange multiplier A\. Then we have,

SVBH B
So 0,
0VBH
= .24
Ven
DY 0.

They can be also expressed by using as variables the dressed central charges Z¢ = e R®
and Z! = e ?R! and the Lagrange multiplier as follows,

(1+X\)2Z*=0,
1-N2z'=o, (5.25)
R,R® — RiR! = g2,

where now the dilaton has been absorbed in the Z’s.
There are three kinds of solutions of the eqs. (5.26). These solutions are given by:

solution (1) : Zg =0, Zr =0, A # £l (5.26)
solution (2) : Z,=0, Zr#0, A=+1, (5.27)
solution (3) : Zg # 0, Zr =20, A=—-1. (5.28)

The first one is a singular degenerate solution; while the two others describe respectively
a non BPS and a BPS black hole.
Moreover, since the dressed magnetic charge Z is given by the product e ?R, the
vanishing of the product
e R=0, (5.29)

[

can, in addition to the singular case e7? = 0 = R, be solved as well by taking
e =0, R#0 (5.30)

or
e #0, R=0. (5.31)

Then, we have to distinguish the two following solutions:
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(a) case 1: o9 — 0.
In this case, the value of the minimum of the potential at the critical point is given by,

VB = e 27°8% = 0. (5.32)
So the entropy Sgu of the black hole is zero,
Sgu = 0. (5.33)
This configuration corresponds to the solution (.24).
(b) case 2: 0 = 09 < .

Here the value of the dilaton at horizon o (Therizon) = 00 is given by a finite number
(00 < 00). The two solutions (p.27)—(p.2§) read as follows

case (2a) : R,=0, R;#0, A=1,
case (2b) : R, #0, R =0, A=-—1. (5.34)

The corresponding values of the 6D black potential ljlgnf{n at the minimum are

case (2a) : yain — _e=20062 5 g? <0,
case (20): pin — 420092 5 0, g2 >0. (5.35)
In these relations, og is a free parameter. To fix it, we need an extra constraint. We will
see later on that oy can be indeed fixed in the case of the dyonic pair DP = BH-BM.
Before that let us complete this analysis by considering also the effective potential Vpym
of the black membrane and its entropy Spu.
5.2 Effective potential Vgy

The electrically charged black membrane BM is the dual of the magnetic black hole BH
considered above. Its effective scalar potential Vg depends on the electric charges qa and
the field variables of the moduli space (f.4). The 24 bare electric charges qa are given by,

q* = [ 7P,
54
Fr = * (7). (5.36)

The qp’s with A =1,...,24, form a 24-vector charge of the group SO (4, 20).
The explicit expression of potential Vpy of the black membrane can be read like

Vem = (WaW®+ W, W7) | (5.37)

where now W, and W7 are respectively the dressed electric charges of the bare ones qu.
These dressed charges can be expressed as linear combination as follows,

24
We =3 apP,
A=1

24
W= aqPr, (5.38)
A=1
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where, like for Uy, of eq. (5-3), the field matrix PA* parameterizes the moduli space (5-4).
The matrices PA¥ and U,y are then related to each other. To obtain this relation,
we use the electric/magnetic duality exchanging the black hole and the black membrane
charges.
Formally, the electric/magnetic duality can be stated at the level of the effective scalar
potentials Vg and Vg like

gA — gA,
VBH < VBM; (5.39)
and then
Ry — W%,
Ry < W', (5.40)

Extending the electric/magnetic duality relation eqs. (B.33), which we rewrite as follows,

24
> ang" = 2rk,
A=1

24
> ka=kez, (5.41)
A=1
to the dressed charges,
24
S Whzy =k, (5.42)
A=1

we can determine the relation between Upy; and Ppy, matrices. Indeed putting

wh =3 pPMqg, (5.43)
b
and
Zy =Y " Lra, (5.44)
T

back into above relation, we find that the matrix PTA 45 just the inverse of the matrix Usy.
Therefore, electric/magnetic duality mapping the black hole BH to the black mem-

brane BM is given by eq. (p.49)
Notice that, like for the matrix Ups;, we also have the following properties:

(i) the factorization of the moduli space (5.4) as SO (1,1) x
torize P like,

SO(4,20
m allows to fac-

pAY = eto (LM (5.45)

Multiplying both sides of this equation by gx, we obtain the dressed central charges
W = (W“, wi )

W = P,
Wi = qa P . (5.46)
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(i)

black hole BH electric/magnetic black membrane BM
gt = aa
Usy - P = (Usy)™
ZA — wA
A - £

Table 2: Electric/magnetic duality in 6D supergravity.

As in the case of 6D black hole eq. (f-1§), these charges factorize as well like

Wa — €+0Ta,
wl =etor!, (5.47)
with
a —_1\Aa
T% =qn (L71)7,
_I\AT
7' =qa (7Y™ . (5.48)

The dressed charges T% and T are the dual of the R, and R;.

the orthogonality property of the non compact SO (4,20) group, which we can be
written as

o D Sl A A R

allows to get more information on the dressed electric charges. Multiplying both sides
of this algebraic constraint equation by qaqx, we obtain

W W — W W! =et27¢? (5.50)
with
4 20
q* = aan™ax = <Z w@w-> q?) : (5.51)
a=1 I=1

This is the electric analogue of the constraint relation (b.9) concerning the dressed
magnetic charges of the black hole. This condition will be implemented in the effective
potential Ve eq. (5.37) by using a Lagrange multiplier £. The auxiliary field ¢ should
be thought as the analogue of the Lagrange multiplier A used in the black hole case;
see also table .
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Combining eq. (§.37) with eq. (5.50), we end with the following generalized effective scalar
potential for the black membrane,

Vam = (WaWe+ WiW!) + ¢ (W,we — Wil — et2q?). (5.52)
Notice that lowering and rising indices of SO (4) and SO (20) are done with the usual
Kronecker metric, that is W, = W and W; = W!. Those of SO (4, 20) are done with the
metric Nax.
5.2.1 Black membrane attractor equations

The effective scalar potential of the 6D black membrane can be also put in the form
Vem = (1L + &) W, W+ (1 — &) Wl — get?7 ¢, (5.53)

The variation of Vgy with respect to & gives precisely the condition (5.50); while the
variation with respect to W, and W give constraint egs. on the field moduli,

SViM

(SWa = (1+§)WCL7

2%

gﬁ%EZ(P—QWG, (5.54)
5];]21\/[ — WaWa _ W[WI _ e+20q2 )

The attractor eqgs. for the black membrane corresponds to the extremum (minimum) of
this potential. These eqs. read as follows

(1+&W, =0, (5.55)
(1-Wr=0, (5.56)
(W W — W W) —et?q? = 0. (5.57)

Like for the black hole, there are three solutions extremizing the effective scalar potential
VM. These solutions, which are classified by the sign of the semi-norm of the electric
charge vector qp, are listed below:

(1) first solution (q* = 0):

W, =0,

Wr =0, (5.58)
€4 41,

This is a singular solution.
(2) second solution (q* < 0):

W, =0,

Wr %0, (5.59)
£ =11.

This solution corresponds to non BPS black membrane.
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(3) third solution (q? > 0):

W, #0,
W; =0, (5.60)
£=-1

This solution corresponds to BPS black membrane.

Putting these solutions back into (5.53), we can determine the value ljlgnﬁl of the effective
potential at the extremum. For the three solutions, the extremal values can be combined
altogether in a unique form given by:

VB = —€e™q? . (5.61)

Notice that due to the constraint eq. (F.59) which requires q®> = 0 for W, = W; = 0, the
potential at the first extremum (first solution) should vanish:

(1):  var=0. (5.62)

For the two other cases (2) and (3) with q? # 0, the values of the effective potential at the
corresponding extremum read as follows:

VB = et |2 > 0, (5.63)

where the dependence into the Lagrange parameter £ has been also fixed as £ = +1.

Notice that & = +1 corresponds to the non BPS black membrane while £ = 1 is a
BPS state.

Notice also that the value of the effective potential at the extremums depends on the
factor et2? which, like in the case of the black hole, is an unfixed modulus.

Below, we give more details concerning the above solutions; in particular those
solutions with

Va0 . (5.64)

+20

Then, we turn to study the free factor e and show how it can be fixed in the case of

the dyonic attractor pair BH-BM.

5.2.2 Solving eq. (5.55)
Recall that W¢ and W' depend, in addition to (L_I)Az, on the dilaton o in the following
manner eq. (p.47),

Wa — €+0Ta,
w! =etor!, (5.65)
with
a —_1\Aa
T =qa (L7H)7,
7! = qu (L)Y (5.66)
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Using this factorization, we will show that there are various ways to solve the attractor
egs. of the black membrane.
Among these solutions, we have the degenerate one associated with W, = 0 = W; and

leading to
yEin — (5.67)

This solution will be ignored hereafter.
The two other solutions are those associated with eqs. (5.60)—(F.61). We have:

o A case: W, =0, Wr=#£0,£=1.
Since the W’s depends on the moduli and the bare charges; i.e,

W =W (o,L,q) , (5.68)

the conditions W, = 0 and W} # 0 allows then to give the relation between the field
moduli of (p.4) and electric charges qa of the black membrane.

Substituting W, and W7 in terms of T, and 717, we have

W, =eT* =0,
Wr =etoT! £0. (5.69)

Obviously, the solutions of the above relations should satisfy the constraint equation
W W —WW! =et27¢? (5.70)

which, by substituting W, = 0, reduces to
20
> ww! = Z W2=—et?¢2>0. (5.71)

As we see, definite positivity of the norm Z?il VVI2 requires
—|a? <o0. (5.72)
Eq. (p.69) can be solved in two basic ways as follows:

(1) either by taking o — —oo whatever the values of T%; in particular 7% # 0. But
this solution should be ruled out since we should have

Wr=etT #0, (5.73)

which violates eq. (5-77)).
(2) or by taking o = o9, an arbitrary but a finite number (say o2 < 00), and 7% = 0
but T # 0.

A solution for T% = 0 depends of the value of q*> = qxn*¥qx. and can, a priori, be
split into two situations (i) and (ii) corresponding respectively to:
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(i)

(i)

a light like charge vector q* = 0.

We already know that this case should be ruled out; but it is interesting to
see the explicit relation between the field moduli Lay of (54) and the electric
charges of the black membrane. We have

(L—I)Aa — # qua
= # %" =0. (5.74)

However, because of eq. (p.71]) which requires

20 20
S wiw! = et N TT = —et? 2, (5.75)
I=1 =1
we get
Y r'=0 = T;=0. (5.76)

This solution should be then ruled out since T} # 0.

a non zero semi-norm q> # 0.
We have the following:

(L) (¢q* — g’n?)

2 2 a
T, = ——>=0. (5.77)
This solution is acceptable provided q? < 0 since eq. (5.71) requires

ST =—q?>0. (5.78)

From this relation we can determine T; i.e

I
szu I=1,...,20, (5.79)
(ZJ 1 qJ >
which leads in turns to
(LM = qta! V_d” I=1,...,20. (5.80)

@ (i)

In this case, the values of the effective scalar potential 1~iBM at the minimum is
given by
ymin — _ot202¢2 — 202 ‘q2| >0. (5.81)

It depends on the electric charges. but it has a free dependence in the value o9
of the dilaton.
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e B.case: Wy 0, Wr=0,&=—-1.
We have to solve

Wy =etT 40,

Wr =eT! =0, (5.82)
5 = _17
with the constraint relation
4 4
S W= WZ=e"q>0. (5.83)
a=1 a=1

From this constraint relation we see that the electric charges of the black membrane
should be g2 > 0.

The method is quite similar to the one used for the black hole case. After some straight-
forward calculations, we end with the following

case (3): ygin — ¢+292q2 > (5.84)

where we still have the unfixed factor et272.

6. Entropy of the pair BH-BM

We start by recalling the various expressions of the effective scalar potentials of the 6D
black attractors that have been obtained so far. These are collected in the following table

6D black attractors: effective scalar potential

dyonic black string: Vis (o) = %(340 + g2—‘2)e_4"

(6.1)
black hole: Vpi (0, R, A) = e 27V (R, \)
black 2-brane: Vem (0, T, &) = €2 Vo (T, €)

The entropy Sgg of the dyonic 6D black string BS reads, in terms of the electric qg
and magnetic gy charges of the 3-form field strength Hgs, as follows:

Sps = 2000 (62

or again like
™ *
Sps = 5 |k0| , ko € Z* . (63)

For the entropies Sgy and Sy of the 6D black hole BH and black membrane BM, the
situation is a little bit different.
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Viewed separately, the corresponding entropies Spp and Sy are respectively given
by:

1
Spn = 16_200 ?| . (6.4)
and )
SpMm = 16202 |®| (6.5)
with

4 20
g? = <ZQ§ —Zg?) ,
a=1 I=1
4 20
q* = <Z g — Zﬁ) : (6.6)
a=1 I=1

In these relations og and oo stand respectively for the value of the dilaton field at the
horizon of the black hole BH and the black membrane BM:

o0 =0 (Tbn) » rpn = black hole horizon,

o2 =0 (Tbm) , Tbm = black 2-brane horizon . (6.7)

As we have noted before, oy and o9 might also take finite values but unfortunately cannot
be fixed if dealing with BH and BM as independent objects.
A way to see why the effective potentials

VBH = VBH (U, R, )\) , (6.8)

and
Vem = Veum (0,T,€), (6.9)

cannot fix the dilaton at their extremum is to note the following:

(i) First the scalar potentials Vg and Vg are eigenfunctions of the operator %:

A%
o = _2VBH7
do
dVem
= +2 . 1
o +2VBM (6 0)

(ii) the zeros of the effective potentials Vg and Vpy can be obtained in three ways.

In the case of the black hole BH, the zeros are given by,

(1):e720=0,  Vy(R,\) =0
Ve = ¢ Vg (RA) =0=4 (2):e720 =0,  Vy(R,\)#0 (6.11)
(3) : e7290 £ 0, Vo (R,\) =0
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For the configurations (1) and (2), the value oq of the dilaton at the critical point is
o0 — 400 . (6.12)
They lead to the degenerate relations ([L.3)—(R.20).

However, for the third configuration, the critical value of the dilaton is unfixed and
can be any arbitrary; but finite, value. This is the case we are interested in here.
In the case of the black membrane BM, we have
(1):et22=0, Vo (T,§) =0
Vem = e 22V (T,6) =0={ (2):et?2 =0, Vo (T,6)#0 (6.13)
(3) : €+202 75 07 V2 (T7 g) =0
The configurations (1) and (2) imply
o9 — —00 , (6.14)

while for the third configuration leaves oo an arbitrary finite number.

Notice that eq. (p.11) and (p.13) exhibit very remarkable properties; in particular the

two following:
(1) They are exchanged under electric/magnetic duality.
At the black hole and the black membrane horizons, we then have
+tog <  Foa, (6.15)
gn < qa- (6.16)
(2) The above relation (f.16) should be associated with eq. (f.3) of the dyonic black
string.

This property shows that
o9 = —0p , (6.17)

ending then with one unknown quantity; say og, which remains unfixed.

Moreover, eq. (B.16) teaches us that the black hole potential (5.20)-(5.21)

Ve = e 2V , (6.18)
and the black membrane potential (5.37)-(B.1))
Veum = etV (6.19)
as two limits of the potential of the dyonic black pair DP = BM-BH.
Vpp =~ e 27V + 27V, . (6.20)

In the limit ¢ — —o0, the potential Vpp of the dyonic pair reduces as

Vpp - VBH , (6.21)
and in the limit ¢ — +o00, it behaves like,

Vpp — VBM - (6.22)

To get the explicit expression of oy, we have to study the attractor mechanism of the dyonic
attractor DP = BM-BH.
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6.1 Attractor eqs. for the dyonic DP

To begin, notice that the general moduli dependence of the effective scalar potential
Vpp of the dyonic black attractor pair is given by,

Vop =V (0; R, T:\&,(5q,9) - (6.23)

The set of parameters {0, R, T, \,&,(, q, g} is the general set of the possible moduli in which
may depend the effective scalar potential and which are supposed to describe the attractor
eqgs. of the DP dyonic pair. They are as follows:

(a) the R’s and the T’s are the dressed charges as in eqs. (p.1§)—(p.19) and (pb.47)—(p.49);

(b) X and ¢ are the Lagrange multipliers given by eqs. (5.1§)-(p.16) and (.59);

(¢c) q=(qan) and g=(gp) are the electric and magnetic charges given by

egs. (31, (B:37), B33, (B:39)

(d) the variable ¢ is an extra Lagrange multiplier that will be described below.

Notice also that, like for the dyonic black string BS, the potential Vpp of the dyonic pair
should be also invariant under the electric/magnetic duality (6.16).

Ezpression of Vpp.
The explicit expression of Vpp is given by the sum of:

(i) the effective scalar potential of the black hole (p.20)—(p-21),

VBH = VBH (07 R7 )‘7 .gA) . (624)

(ii) the effective scalar potential of the black membrane (p.37) which is dual to Vg,

Veum = VBm (0,T,&,qn) - (6.25)

(iii) an extra term depending on the dressed electric and magnetic charges Z and W.
This term is given by the constraint eq. (5.49)

C=C(Z,W), (6.26)

capturing the electric/magnetic duality between the dressed charges of the black hole
and the black membrane. It may be interpreted as the interaction term.

Then, we have
Vpp = VBu + Vim + CC, (6.27)

where ¢ is a Lagrange multiplier used to implement the constraint (5.49) in the effective
scalar potential of the DP dyonic pair.

In addition to the various electric and magnetic bare charges qx and gp, the dyonic
potential Vpp depends on the eighty one field variables (o, Lay) of the moduli space; and
on the three Lagrange multipliers A, £ and (.
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While the dilaton appears in Vpp as €27, the eighty field moduli Ly, are involved in
the game through the dressed charges,

Ra = Ra (LAZ) 5
Rr = Ry (LAE) , (6.28)

and
T. =T (Lys)
Tr = Ty (Lyy,) - (6.29)

By substituting Vgg and Vgym by their explicit expression, we can put the DP effective
scalar potential Vpp in the form

Vop = e 2V + etV + (C (6.30)
where we have set
Vo=(1+X)> R.R"+(1-X))Y R/R' —xg?, (6.31)
a I
and
Vo= (148 T.T"+(1-&) Y TiT" — ¢, (6.32)
a I
as well as
24 24
C=—|1=-> y™ZWy | =-[1- > n™RTx . (6.33)
AY=1 AY=1

The equations defining the extremum (minimum) of the scalar potential Vpp are then given
by the four following systems of eqgs.:

dVpp

sre
5;);}’ =0, (6.34)
L

and
(5;;]35 o,
5;’% ~0, (6.35)
(ﬂggp o,

as well as Vop » 630

o¢ )
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and finally
OVpp

o

Egs. (6.39) give relative extremums (minimums) associated with the black hole BH con-
tribution.

— 0. (6.37)

Eqgs. (5-39) define relative extremums (minimums) associated with the black membrane
BM.

Eq. (6.39) captures the duality relation between the black hole BH and the black
membrane BM.

Eq. (p-37) is in some sense special; it gives the values of oy and oy we are after.
Below, we give the details on the solutions of these egs.

6.2 Extremums of Vpp

Here we study the extremums (minimums) of the potential (p.30). Since Vpp is multi-
variables function, we shall proceed by steps in order to get these minimums:

(1) First we solve successively the eq. (6.35), eq. (6.36) and (6.3d). These solutions fix
the critical values of the field moduli and the Lagrange multipliers in terms of the

electric and magnetic charges qo, 90, 9a, 9« and qr, gr;

Rmin

= R(q.9),
™" =T (q,9) ,
A — X (q,9) , (6.38)
& =¢(q.9) ,
™ =C(q,9) -

(2) Then, we substitute the obtained solutions back into eq. (6.30) to get the new effective
potential Vpp namely

Vpp = e Vg 4 P27V 4 (¢o)m (6.39)
where now
V(I)nin _ VO (Rmin Tmin )\min Cmin)
Vénin — Vg (Tmin Rmin gmin Cmin) ) (640)
(3) After that, we solve the attractor equation given by the minimization of (6.39), i.e

§Vbp
oo

~0, (6.41)

in order to determine the critical values of o at the extremums.
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6.2.1 Solving eqs. (6.35)—(6.36))

A) solution of egs. ([6.33).
By substituting eq. (p.30) and (p.31]), we can be put egs. (p.35) in the form

(1+>‘)Ra+CTa = 07
(1-ANR;—¢Tr =0, (6.42)
R,R* — RiR! = ¢°.

These equations have three types of solutions which can be classified according to
whether the sign of g?; that is g2 =0, g2 > 0 or g2 < 0.

e Case Al (g2 =0).
In this case, the solution reads as:

R™ =0,
RP™ =0,
Amin — 1 (6.43)
Cmin — 07

and all remaining other moduli are free.

e Case A2 (g > 0).
Here the solution reads as:

RY™ = g, !g2\<j£:g§> :

b=1

~
I

)

(RaRa)min — ‘g2

RPin =0, (6.44)
)\min —
<min =0

and all remaining other moduli are free.

e Case A3 (g? <0).
In this case the solution is given by:

20 -3
R — g1/ (293) |
J=1

RMn — (), (6.45)
)\min — _‘_1’
Cmin — O,

and all remaining other moduli are free.
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In all cases A1, A2 and A3 (g2 =0, g2 > 0 and g? < 0), we have
Ve = (RRT)™ = |g?. (6.46)
B) Solution of egs. (6.34).
Using eq. (B.30) and (B.31]), we can be put eqgs. (6.36) in the form
(1+£)Ta+<Ra =0,
(1-8Tr—CRr =0, (6.47)
T,7% — ;T = ¢2.

Here also we have three kinds of solutions depending on the signs of q2. The solutions
are quite similar to the previous cases; they are given by:

e Case B1 (¢ =0).
In this case the solution reads as:

Tmin =0
a Y
™ =0
gmin — 1 (6.48)
<min -0

and all remaining moduli are free.

e Case B2 (q® > 0).
Here the solution is given by:

T = qa/|?| (Z qf) :

b=1

o~
Wl

(T.T")"™" = o*,

M — 0, (6.49)
gmin — _1’
Cmin =0,

and all remaining other moduli are free.

e Case B3 (q? <0).
In this case the solution reads as:

1
20 2
" = qrv/—q? <Z q%) :

(TITI)min _ _q27

™ — (6.50)
Smin — +1
<min =0

and all remaining moduli are free.

— 41 —



In all cases B1, B2 and B3 (¢ =0, %2 > 0 and ¢ < 0), we have

Viin = (T, 7)™ = |¢?. (6.51)
C) Solution of egs. ([6.34).
Eq.(B:30) gives
4 20
T°R, —T'R; =) (TuR.) — > (T1R;) =k, (6.52)
a=1 I=1

and is solved as:

o (Case C1.

In this case, the solution corresponds to

TR, = k,
T'R; =0, (6.53)

and requires that T°R, # 0 and T% # 0. Consistency with the solutions of
egs. (6.39)—(6.36) implies:

4 -1
T;nin — kRznin <Z (RbRb)min> 7

b=1
TR — (6.54)
Rf™ = 0.
Moreover equating the expression of 7™ given by case B2 with the expression

of T which we obtain by substituting R™" by its value given by case A2, we
get the following identity

4 4
(Z (TgninTgnin)> (Z R}TinR{,“i“) = k?. (6.55)
b=1 b=1

Using eq. (6.50) and eq. (6.45), we can obtain the following electric and magnetic
duality relation

.=k, ¢>0, g >0. (6.56)
This electric/magnetic duality relation involves the squares of the vector charges
qa and gj.
o Case C2.

In this case, the solution is given by

TR, = 0,
T'R; = —k, (6.57)
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and corresponds to:

20 -1
T}nin — _kR?’lin (Z (RJRJ)mm) 7
™ — (6.58)
RY™ = 0.

Substituting the solution of T’ Imin given by case B3 and R‘}’“ir1 given by case A3,
we get the following identity

20 . 20 .
(Z (T}ninT,)mlrl) (Z (R}nian)m‘“> = k2 (6.59)
I=1 I=1

which corresponds to the electric/magnetic duality q2.g?> = k?; but now with
q? < 0and g2 < 0.

6.2.2 Solving eq. (6.41))

Substituting Viin, Vinin and (CC)min by their expressions, we get the following effective
scalar potential for the dilaton field

Vop (0) = e |g?] + 127 |2 . (6.60)
This is as positive definite effective dyonic potential
9Dp (0)>0, (6.61)

that depends, in addition to the dilaton o, on the semi-norms q? and g2 of the bare electric
and magnetic charges of the dyonic pair DP.
Since the second derivative

d?j;l’ >0, (6.62)
the minimum of eq. (p.6() is obtained by solving
(e™7 |g*| — e |g?]) = 0. (6.63)
The critical value o, of the dilaton solving this constraint relation is
o _ ]
ja?|
. = i (ln‘gﬂ — ln!qz‘) . (6.64)
Putting this solution back into eq. (6.63), we get
VB pu = 2V/18%¢?] . (6.65)

This relation should be compared with eqs. (f.19)-(f.14).
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In the end, we would like to add that the analysis given in this section extends directly
to the the dyonic pairs
DP = BH-B3B, (6.66)

and
DP = BS-BM, (6.67)

of (B-I3)-(B.14) of the 7D N = 2 supergravity embedded in 11D M-theory on K3.

7. Conclusion and discussion

In this paper, we have studied the extremal black brane attractors in the 6D (resp. 7D)
N = 2 supergravity limit of the 10D type ITA superstring (resp. 11D M-theory) on K3. In
these limits, the classical entropy of electrically charge black branes EBB (resp. magneti-

cally charged branes MBB) have degenerate values; see eqgs. ([.3), (L.11)), (R:20), (5.33).
In trying to understand this classical degeneracy, we have been lead to make a proposal

where the degenerate value of the 6D black hole BH entropy

Spi =0, (7.1)
and the entropy of black membrane BM

Sp =0, (7.2)
appear as two singular limits of the classical entropy

t _ cent

Sp-Bu = Spp (7.3)

of the bound state dual pair (BH-BM)s, = DP. This result applies as well for the 6D
dyonic black string (BS)gp and for the dual pair attractors (BH-B3B),, and (BS-BM),,
of the N' =2 7D supergravity theory.

In analyzing the degeneracy of Spap” = Synn’” = 0, we have also found that elec-
tric/magnetic duality is a universal symmetry playing a central in the physics of 6D/7D
black attractors. Among our results, we mention the following: first, by using the elec-
tric/magnetic duality (e/m symmetry for short), we have given a refined classification of
the black attractors in 6D and 7D. These black branes are classified into two representations
of the e/m symmetry: dyonic singlets and pairs as follows:

(1) Siz dimensions.
In 6D non chiral supergravity theory with sixteen supercharges, we have:

(a) An attractor singlet, corresponding to the dyonic black string denoted as (BS).
This dyonic attractor carries an electric charge gg = ( f 53 .7-"3) and a magnetic
charge gg = (fs3 fg) with F3 being the field strength of the NS-NS B,,, - field.

(b) An attractor pair describing the dual pair

pp=pu-pm= | 1) (7.4)
BM

carrying 24 electric and 2/ magnetic charges {ga, ga }-
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The black hole BH carry 2/ magnetic charge ¢g" = ( f g1 ff) and corresponds to the
singular limit

o — +00,

—0

e’ — 0, (7.5)

of the SO (1, 1) factor of the moduli space SO (1,1) x %. This singular limit

may be formally stated as,

DP o — 40 <BH). (7.6)
S 0

The same feature is valid for the electrically charged black membrane BM carrying
24 electric charges {qan}. The BM, which is e/m dual to BH, corresponds to the
singular limit

o — —00,
e — 0, (7.7)
in the moduli space. We also have
DP o — —x 0 (7.8)
0=~ Byl .

Seven dimensions.
In the 7D N = 2 supergravity theory we have no attractor singlet; but two pairs
(DP), and (DP),:

e The first pair is given by the bound state BH-B3B carrying 22 electric and 22
magnetic charge {qa, ga}-

BH
DP), = BH-B3B = .
(DP), 3 (BBB>, (7.9)
e The second attractor pair is given by the dual pair

(DP), = BS-BM = ( 5}\54 ) . (7.10)

This pair carries an electric charge gg and a magnetic one gg; it should compared
with the 6D black string (BS)4-

Notice that the black hole (BH),, (resp. B3B) with the 22 magnetic charges ga
(resp. 22 electric charges gy ) follows as the singular limit ¢ — 400 (resp. 0 — +00)
of (DP);.

The same property holds for the 7D black string (BS),,, and the black membrane
(BM), . They are singular limits of the (DP), pair.
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Then we have considered the question of computing the entropies Spiack—_brane Of the above
6D and 7D black attractors.
For the dyonic 6D black string (BS)s, with an electric charge go and a magnetic charge

go, the entropy S8 is given by eqs. ([L1J)—(f14) namely,

1
SBS = 58040 > 0, (7.11)

which, for later use, we prefer to rewrite as follows

1
Sgs = 5\/gdai > 0. (7.12)

Clearly Sgg is invariant under e/m symmetry.
For the case of 6D black hole (BH)gp and the 6D black membrane (BM)yp, the
corresponding entropies SSE and SEU take degenerate values as in eqgs. (T.1)—(F-3).
Recall that this property of the classical entropy has been point out in literature many
years ago [A5); see also [64, F]. It is due to the specific structure of the scalar manifolds
M}5? and M25? of these the 6D and 7D theories which contain an ambiguous SO (1, 1)
factor as shown below,

SO (4,20)
SO (4) x SO (20) ’
SO (3,19)
SO(3) x SO (19)

M35% =80(1,1) x

MP>5% = 80(1,1) x (7.13)
The SO (1, 1) factor, which is associated with the dilaton, puts a very restrictive constraint
on the critical value of the effective scalar potential and on the entropy.

Moreover, by freezing the dilaton to a some constant value; say ¢ = oy for the BH
and o = ogy for the black membrane, the corresponding entropies are no longer zero; but
they depend on these free constant parameters.

To overcome this difficulty, we have proposed that, classically, the black hole BH and
the black membrane BM of the 6D space time should be thought of as an attractor bound
state with the singular limits ([.4), (7.§). In this view, all the difficulties are overcome and
e/m duality appears as a universal symmetry.

Entropy of dual pair DP. With the attractor bound state picture in mind, we have
studied the attractor mechanism of the 6D dual pair DP = BH-BM and we have found,
amongst others, the following:

(i) the values opy and opy of the dilaton at the horizons of (BH)4, and (BM),, are as
follows

OBH = —OBM ; (7.14)

in agreement with e/m duality. Moreover we have been able to compute oy which
is given by

OBH = (lng2) (ln q2) , (7.15)

1
4

| =
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with

g’ = g'mug”,
q® = q*muqg”, (7.16)

where 7y, is the metric of the tangent space R*20.

(ii) the entropy of the six space-time dimension DP dual pair is given by

1
Spp = 5V lg2q?] , (7.17)

Notice that the relation ([7.17) of the entropy Spp is quite similar to the relation (719)
giving the entropy of the 6D black string.

At the end, we would like to add the two following:

e First, the explicit analysis we have made for 6D applies as well for the black
pairs (7.9)-(F.10) in 7D N = 2 supergravity embedded in 11D M-theory on K3.
The entropy of the attractor bounds (DP), and (DP), have similar expression as in
eqs. ([T17)-([7-16) with nox being the metric of the flat space R31.

e Second, the Lagrange multiplier method we have developed in section 5 seems to be
the appropriate way to deal with the study of the critical points of the black branes
effective potentials.
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A. On effective potential in 6D and 7D

We begin by recalling that, with the exception of D =4, N =1,2and D =5, N = 2,
all supergravity theories contain scalar fields whose kinetic Lagrangian is described by o-
models of the form G/H. The symmetry group G is a non compact group acting as an
isometry group on the scalar manifold and H is the isotropy subgroup having the form
H = H,yt ® Hpatter- The subsymmetry H,yg is the automorphism group of the extended
supersymmetric algebra and Hpatter 18 related to the matter supermultiplets. For the list of
the coset manifolds G/H and the automorphism groups of the various supergravity theories
for any dimension D and number N, see [59, B0]. For D =6, N =2 and D =7, N = 2,
these are given by eqgs. (R.2) and (R.3).
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We also recall that generic D supergravity theories with moduli space G/H have several
specific properties shared by most of these theories. Amongst these features, we quote the
three following:

(1) the group G acts linearly on the (p + 2)- forms field strengths Fq,. 4,,, corresponding
to the various (p+ 1)- forms Ay, 4,., appearing in the gravitational and matter
multiplets.

(2) the properties of a given supergravity theory with fixed D and N are completely
specified by the geometry of G/H, in particular in terms of the coset representatives
L = L,y satisfying the gauge symmetry relation

L(¢)=gL(&)h(9.€), g€G, heH, =¢£(9),

with & being the coordinates of the coset G/H. In particular, the matrix Ay cap-
turing the field coupling metric of the (p + 2)- forms F2

ai...ap+42

Lagrangian density is fixed in terms of L. The physical field strengths T} of

ay...ap+42
the interacting theories are also dressed with scalar fields as explicitly developed in

in the supergravity

the literature; especially in a series of papers by Ferrara and collaborators; see for
instance sections 3 and 5 of the study [5 and [63, fJ] for a geometrical approach
dealing with the so called ﬁ4 supergravity containing the 6D N = 2 superalgebra as
a subsymmetry; see also the appendix B of [BJ].

(3) Like in 4D N = 2 theory, higher dimensional supergravity exhibits as well two kinds of
central charges: Zge, coming from gravity multiplet (geometry) and Zpagter arising
from the matter sector. The dressing property allows to write down the central
charges Zgeo = Z4, ..., associated to the (p + 1)- forms A%iavég 1 in the gravitational
multiplet in terms of the geometrical structure of the moduli space. The matter
(p + 1)- forms Agf_‘.t_'g;fﬂ of the matter multiplets give rise to charges that are closely
related to the central charges.

Notice in passing that when p > 1, the central charges do not appear in the usual super-
symmetry algebra, but in its extended version containing the central generators Zg..q,
associated to p- dimensional extended objects. Notice also that besides the fact that they
satisfy differential relations of Maurer- Cartan type, the central charges Z satisfy as well
sum rules quite analogous to those for the N' = 2 special geometry case [BJ]. These sum
rules, which define in particular the effective potential,

Veff ~ |deo|2 + |Zmattcr|2 . (Al)

have been analyzed in details in [f5]. Our main goal below is to write down the explicit form
of the dressed charges Zgeo, Zmatter i the 6D /7D supergravity cases and then Veﬁf]fj / P We
also give some useful relations between Zge, and Zpyatter Which are analogous the familiar
D = 4, N = 2 supergravity using special geometry relations [5J].

For concreetness, we shall first focus on N’ = 2 supergravity in 6D and then move to
7D. These theories have respectively 81 (58) scalars distributed as follows:
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(i) the dilaton o belonging to the 6D (7D) N = 2 gravity multiplet.

(ii) the eighty (fifty seven) other moduli ¢,; (par) belonging to the 6D (7D) N = 2
Maxwell multiplets.

A.1 6D N = 2 supergravity

The effective scalar potential Vog of the 6D black objects is given by the so called Weinhold
potential (A1) expressed as quadratics of the dressed charges [64-F7],

(Z4,Z-,Z0,21), a=1,....4, I=1,...,20. (A.2)

These charges appear in the supersymmetric transformations of the (fermionic) fields of
the 6D supergravity theory.
At the event horizon of the 6D black objects, the potential Veg attains the minimum.

The real (0, ¢or) moduli parameterizing % are generally fixed by the charges

g+ y 9, ga ) hI y qa, PI, (A3)

of the N/ = 2 6D supergravity gauge field strengths
H;_7 H3_7 F2aa F217 F4a7 F4I'

The attractor equations of the 6D A = 2 black objects are obtained from the minimiza-
tion of the (Vesr)paac- Notice that from the field spectrum of the 6D N = 2 non chiral
supergravity, one learns that two basic situations should be distinguished:

(1) 6D black string (BS) with near horizon geometry AdSs x S3. This is a 6D dyonic
black F- string solution. The electric/magnetic charges involved here are those of the
gauge invariant 3- form field strengths

1 1
H} = - -
3 2( 2

associated with the usual 2- form antisymmetric Bffy fields in 6D. The x conjugation

Hs + *H3), HS_ = (Hg— *Hg),

stands for the usual Poincaré duality interchanging n- forms with (6 — n) ones.

(2) 6D black hole (BH) and its black 2- brane (BM ) dual. The field strengths involved in
these objects are related by the Poincaré duality in 6D space time which interchanges
the 2- and 4- form field strengths.

Below, we study briefly and separately these two configurations.

(a) Black string in 6D.
The BPS black object of the 6D A = 2 non chiral theory is a dyonic string charged
under both the self dual H;r and anti-self dual Hy field strengths of the NS-NS
B*-fields. Using the following bare magnetic/electric charges,

1
gi:/H?:,t7 gi:§(gj:e)7
SS

where g = f gs Hz and e = f g3 *Hj3, one can write down the physical charges in terms
of the dressed charges.
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(a)

Dressed charges.

The dressed charges play an important role in the study of supergravity theo-
ries [i]. They appear in the supersymmetric transformations of the Fermi fields
(here gravitinos), and generally read like

7% = XEgt + XEg7, (A.4)
where the real 2 x 2 matrix
X xt
X={34 5+ |
XT X7
parameterizes the SO (1,1) factor of the moduli space G. Taking the 7., flat
metric as n = diag (1, —1), we can express all the four real parameters X+ and

Xf in terms of the dilaton o = o (z) by solving the constraint eqs. X'nX =n
which split into four constraint relations like

XIXf-X;X7 =1, X_X_-XIXt=1,
XIXt-X7IX~ =0, XIXf-X-X[=0. (A.5)

These egs. can be solved by,
X1 = X" =cosh(20), X = X' =sinh(20) . (A.6)

Putting these solutions back into the expressions of the central charges Z and
7~ (A:9), we get the following dilaton dependent quantities

1
zZ* = 3 [gexp (—20) £ eexp (20)] . (A.7)
Notice that these dressed charges have no dependence on the w,; field moduli
of the coset SO (4,20) /SO (4) x SO (20). This is because the NS-NS B- fields is
not charged under the isotropy group of the above coset manifold.

Black string potential.
With the dressed charges Z* and Z—, we can write down the gauge invariant
effective scalar potential Vpprs. It is given by the so called Weinhold potential,

2

Vs = (2%)"+ (27) (A8)

Notice that, as far symmetries are concerned, one also have the other ”orthogo-
nal” combination namely (Z)* — (Z7). This combination corresponds just to
the electric/magnetic charge quantization condition. By substituting eq. ([A.4))
into the relation (A.§), we get the following form of the potential,

+
VBS = (g+7g_) M <g_> )
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with ) )
(X4 (x7)F axixt
M == _ _ N2 + 2 .
2X7 X~ (XD)"+ (x9)

From this matrix and using the transformations given in [6J], we can read the
gauge field coupling metric A’y _ and N_, that appear in the 6D N = 2 super-
gravity component field Lagrangian density

£N=2 sugra 1 1

6D _ + - - +
—£ =Rl N, _H"ANH “N_ H ANH
N 61 + <2N+ + 2N n > +

In this eq, R¢ is the usual 6D scalar curvature and g = det (g, ). By further
using ([A.7), we can put the potential Vgrg into the following form

g2 2
Vis (0) = 5 exp (—4o) + - exXP (4o). (A.9)
Notice that the self and anti- self duality properties of the field strengths Hi
and Hy imply that the corresponding magnetic/electric charges are related as
gt =eT, g- = —e~. Using the quantization condition for the dyonic 6D black
F- string namely (etgt + g~ e™) = 27k, k integer, one gets,

(Y9t —97g7) = eg = 2rk. (A.10)

Then the the quantity (Z+)* — (Z7)? becomes (Z1)* — (Z7)? = 2eg, being just
the quantization condition of the electric/magentic charges of the F- string in
6D space time.

(b) 6D black hole.
Contrary to the dyonic BS, the 6D black hole is magnetically charged under the
U4 (1) x U? (1) gauge group symmetry generated by the gauge transformations of
the (4 + 20) gauge fields of the 6D N = 2 gravity fields spectrum. Recall that in 6D,
the electric charges are given, in terms of the field strength Fy, and Fj;, by,

qaZ/ Fyq s p1=/ Fyr.
54 54

witha=1,...,4and .I =1,...,20 The corresponding magnetic duals, which concern
the black 2- brane, involve the 2- form field strengths F2A integrated over 2- sphere,

gaz/Fg, hfz/ Fy.
52 52

Like for black string, the charges @z = (qq,pr) are not the physical ones. The
physical charges; to be denoted like Z,, Z;, appear dressed by the 6D scalar fields
parameterizing the moduli space of the 10D type ITA superstring on K3. Recall that
the charges Z, and Z; appear respectively in the supersymmetric transformations
of the four gravi-photinos/dilatinos and the twenty photinos of the U?° (1) Maxwell
multiplet of the gauge-matter sector.
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(a) Dressed charges.

The dressing of the twenty four electric charges (q“, p! ) of the gauge fields
(Afj, Aﬁ) read as follows:

Za =e 7 (Yabqb + ¢aJpJ) )
Zr =¢e’ (V.qub + Y1JpJ> : (A.11)

Using the real 24 x 24 matrix My = €77 X Ly,
Yoo ba
LAZ = ¢ )
<V1a Y1,
that defines the moduli space é, the dressed charges Zy = (Z,, Z1) can be put
in the condensed form
Zy = MoxQ® = ¢ 7 LaxQ”,
Zr = M[gQZ = e_ULIEQE. (A.12)
Obviously not all the parameters carried by Lax; are independent; the extra
dependent degrees of freedom are fixed by imposing the SO (4, 20) orthogonality
constraint egs. and requiring gauge invariance under SO (4) x SO (20). The
factor e=? of eq. (JA.11]) is then associated with the non compact abelian factor
SO (1,1) considered previously.
Taking the npy flat metric of the non compact group SO (4,20) as npy =
diag (4 (+),20(—)), we can express all the 24 x 24 = 576 real parameters Ljy,
in terms of eighty of them only; that is in terms of ¢,;. Notice moreover that
setting,

Za = e_URay Ra = (LQEQE) ’

Zr = e °Ry, R; = (LixQ%), (A.13)
as well as LY - EF = (LYE¢ — LTEF) = 6, one can compute a set of useful
relations. In particular we have

dLpa = Lvy - (dLY) - PP,
VZ, = (D"Z, + Z,do) , (A.14)
VZ; = (D"Z; + Z;do) ,

where

Dz, = (dZa - ngb> . H=0(4),

D™z, = (dzZ; - Q{Z;), Hy=0(4), (A.15)
and where Q¥ and P! are given by

Oh =By (ak),  Pl=EY-(dLb),
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together with similar relation for Q7 and P¢. Using (A.14), we can write down
the Maurer-Cartan egs. for the dressed charge. They read as follows,

VZ,=Plz,, VZ =PZ, (A.16)

Notice in passing that Z; = 0 is a solution of VZ, = 0. The same property is
valid for Z, = 0 which solves VZ; = 0.

(b) Effective black hole potential.
Using the dressed charges (A.11))—(A.19), we can write down the gauge invariant
effective scalar potential Vgy. Following [, BG, Vsr reads as,

Veu (0,L) = (Z,2%) + (21 2"), (A.17)
which can be also put in the form
Ve (0,L) = ¢ [(RoR") + (R1R")] .

Clearly Vpg, which is positive, is manifestly gauge invariant under both:

(a) the U% (1) x U (1) gauge transformations since the vectors Z, and Z; depend
on the electric charges of the field strengths only which, as we know, are gauge
invariant.

(b) the gauge transformations of the SO (4) x SO (20) isotropy group of the moduli
space. Vpp is given by scalar products of the vectors Z, and Z¢ (resp Z! and
Zr).

Using eqgs. (JA.11]), we can express the black hole potential as follows:
Vi = e % <q“ @+ 0" Nagp” + 0" Nivg” + p"Nisp’ ) :

or in a condensed manner like Vg = e 22 QA Nas Q> with

Nab NaJ
Nis =
AZ (NaJ NU>

Notice that, like for BS, Nayx; has a 6D filed theoretical interpretation in terms of the
gauge coupling of the gauge field strengths .7-"/1\,/; i.e a term like %\/— g, Azfﬁ,,f Py
appears in the component fields of the 6D N = 2 supergravity Lagrangian density.

A.2 7D N=2 supergravity

Here we discuss briefly the effective scalar potential of the black objects in 7D. This study

is quite similar to the previous 6D analysis. Recall that the moduli space of this theory

SO(3,19)xS0(1,1)

is given by ~SO(3)%S0(19) - In 7D space time, the bosonic fields content of the NV = 2

supergravity multiplet is given by

(g/u/a B[,uz/}7 AZ,7 U)a CL:1,2,3, /’Layapzoa"'767
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where By, is dual to a 3- form gauge field C There is also nineteen U(1) Maxwell

pvol-
with the following 6D bosons:
I I _ _
(A, , p™), a=1,2,3, I=1,...,19,

where p? capture 3 x 19 degrees of freedom. The gauge invariant (p + 2)- forms of the 7D
N = 2 supergravity are given by

H3 ~dBy,  F§~dA*,  Fl~dA.
Extending the above 6D study to the 7D case, one distinguishes:
(i) 7D black 2-brane (black membrane BM). The effective scalar potential of the BM is
Vi (0) ~ 22 =e717¢",

with g = [ g3 H3. The extremum of this potential is given by o = oo. The value

of the potential at the minimum is [Vgﬁ (oo)] = 0 and so the entropy vanishes

min

identically.

(ii) 7D black hole: The effective potential of this black hole is given by

3 19
ViR (0, L) =Y Z 2+ 2,77, (A.18)
a=1 I=1
where
Ty = e_"LaAgA, Zr = e_ULaAgA, (A.19)

satisfying the constraint relation,

3 19 3 19
S az -3 ar ¢, (Yur- Yo' ) -4
a=1 I=1 a=1 I=1
and QM = (¢, p") with ¢* = [ F§, p' = [« FL, a=1,2,3, I =1,...,19. The real

22 x 22 matrix
L b Pal
Laop = * , A.20
¢ < Vie L1g ) ( )

is associated with the group manifold SO (3,19) /SO (3) xSO (19). It is an orthogonal
matrix satisfying LinL = n with n = diag[3(+),19(—)]. The SO (3) x SO (19)
symmetry can be used to choose Ly, and Ly matrices as Lyy—Lpg =0, Lyyj— Ly = 0.
Putting the relations (A.19) back into (A1§), we get VEE (0,L) = e 2°Q*NpsQ*
where My = (LGAL% + L[ALé).
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